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Nonlinear transfer due to wave-wave interactions was first described by the 
Boltzmann integrals of Hasselmann (1961) and has been the subject of modelling 
ever since. We present an economical method to evaluate the complete integral, 
which uses selected scaling properties and symmetries of the nonlinear energy 
transfer integrals to construct the integration grid. An important aspect of this 
integration is the inherent smoothness and stability of the computed nonlinear 
energy transfer. Energy fluxes associated with the nonlinear energy transfers and 
their behaviour within the equilibrium range are investigated with respect to high- 
frequency power law, peak frequency, peakedness, spectral sharpness and angular 
spreading. We also compute the time evolution of the spectral energy and the 
nonlinear energy transfers in the absence of energy input by wind or dissipated by 
wave breaking. The response of nonlinear iterations to perturbations is given and a 
formulation of relaxation time in the equilibrium range is suggested in terms of total 
equilibrium range energy and the nonlinear energy fluxes within the equilibrium 
range. 

1. Introduction 
The pioneering work of Hasselmann in the early 1960s (Hasselmann 1961, 1963a, 

1963 b )  established a theoretical framework for estimating the net transfer of energy 
among different frequency-direction components in a wave spectrum. Unfortunately, 
the resulting integro-differential equation proved to be cumbersome in terms of its 
functional structure, necessitating that it be evaluated numerically. Early numerical 
integrations of this equation required very laborious efforts and were limited by 
computer systems available in the 1960s. With the Joint North Sea Wave Project 
(JONSWAP) of Hasselmann et al. (1973), in which the pattern of spectral evolution 
along a fetch was observed to agree at least qualitatively with that predicted by 
these ' wave-wave ' interactions, substantial interest was focused on the accurate 
numerical solution of this equation. 

Longuet-Higgins (1976) and Fox (1976) used a simplified approach to estimate the 
nonlinear wave-wave energy transfer in the vicinity of the spectral peak. Their 
results were not completely consistent with the earlier approximate computations of 
Sell & Hasselmann (1972). Moreover, the determination of essential features such as 
the central minimum and the transition from positive to negative transfer on the 
right of the spectral peak was unclear from either work. Subsequent studies by Webb 
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(1978) and Masada (1980) derived transformed versions of the original integro- 
differential equation which proved to be more adaptable to stable numerical 
solutions. The solutions of Webb (1978) and Masada (1980) supported the early 
computational results of Sell & Hasselmann (1972) and suggested that the narrow- 
band approximations invoked by Longuet-Higgins (1976) and Fox (1976) were 
somewhat limited in their applicability. More recently, Hasselmann & Hasselmann 
(1981) have completed a careful study of the nonlinear transfer. They exploited the 
symmetry of detailed balance (invariance with respect to permutations of all four 
wavenumbers of a quadruplet k, + k, = k, + k4). Their computations constitute a 
standard for evaluation of the nonlinear energy transfer, in terms of the detail and 
accuracy with which they were performed. 

As mentioned previously, the need for a better understanding of the magnitude 
and structure of nonlinear wave-wave interaction energy transfers gained impetus 
following JONSWAP. Shortly thereafter, Hasselmann et al. (1976) considered the 
shape-stabilizing effect of wave-wave interactions on wave spectra and concluded 
that wave-wave interaction effects were so strong that wave spectra were effectively 
controlled, during periods of active wave generation, by a dynamic balance between 
wind inputs and the wave-wave interactions. Questions concerning the role of 
wave-wave interactions in governing spectral shapes have arisen since Hasselmann 
et aZ.’s (1976) study. 

Postulating the stationary distribution corresponding to Kolmogorov’s inertial 
subrange, Kitaigorodskii (1983) showed that energy fluxes due to wave-wave 
iterations should produce an f equilibrium range in the spectrum, rather than the 
f 5  form assumed in the JONSWAP spectrum. This was also the result found by 
Zakharov & Filonenko (1966), as the exact stationary solution to the wavewave 
iteration Boltzmann integral for an isotropic field of weakly nonlinear waves. 
However, Phillips (1985) suggested that a detailed balance of all source terms, 
including wind input, wave breaking and wave-wave interactions, could produce an 
f4 equilibrium range and that knowledge of all source terms was necessary to 
understand the net scaling involved in establishing an equilibrium range. The 
numerical study of Komen, Hasselmann & Hasselmann (1984) examined the 
balances among all source terms in a ‘fully developed ’ sea for frequencies extending 
from the vicinity of the spectral peak f, and up to  2.5 times f,,, basing their nonlinear 
transfer calculation on Hasselmann & Hasselmann (1981). 

Recently, Toba, Okada & Jones (1988) suggested that an energy flux must exist 
from high frequencies to low frequencies in the equilibrium range, as a result of their 
investigation of characteristics of the relaxation of a deep water wave spectrum 
under a decreasing wind. This is in addition to the more widely recognized flux from 
low frequencies to high frequencies in the Kolmogorov subrange. Therefore, a simple 
analogue to the one-dimensional cascade of energy in turbulence may not be 
appropriate for surface gravity waves. 

Along with theoretical and conceptual developments related to the role of 
wave-wave interactions in wave generation and the influence of these interactions on 
spectral shape, a parallel continuing effort has been devoted to obtaining accurate 
parameterizations of the complete Boltzmann integral. Barnett (1968), Barnett & 
Sutherland (1968) and Ewing (1971) based parameterizations of complete integrals 
on the Neumann spectrum and Pierson-Moskowitz spectrum, respectively. Etesio 
(1981) investigated parameterizations based on the scaling laws for if spectra and 
also inherent in the complete integral. Hasselmann et al. (1985) and Hasselmann & 
Hasselmann ( 1985) examined approximations using empirical orthogonal functions 
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and also parameterizations based on the superposition of a small number of discrete 
interaction configurations. The latter type of approximation has been adopted into 
the WAM model (Hasselmann et al. 1989). Since this model is the subject of 
considerable international investigation, the adequacy of the parameterization is of 
interest to most wave modellers. 

It appears from the issues raised here that estimation of the effects of nonlinear 
wavewave interactions has assumed an important role in wave generation and 
modelling research. In  spite of this, most probably owing to the complexity of the 
numerical problem, few efforts have been made toward establishing a clearer 
formulation for some of the fundamental characteristics of the nonlinear energy 
transfers. The present paper will attempt to remedy this situation, at least in part. 
We begin by formulating an efficient numerical scheme which should assist in 
understanding some of the inherent scaling properties of the nonlinear energy 
transfer. This allows computation of the nonlinear transfer on a very fine integration 
grid and also achieves high numerical stability. This scheme will then be used to 
investigate the behaviour of nonlinear energy fluxes with respect to high-frequency 
power law, peak frequency, peakedness, spectral sharpness and angular spreading. 
We also consider spectral evolution with respect to time and the response of 
nonlinear wavewave interactions to perturbations within the spectrum. 

2. Evaluation of the nonlinear flux integral 
To date most researchers have concentrated on solution of the ‘source function’ 

form for nonlinear wavewave interactions. In  this form, the collision integral for 
four resonantly interacting waves allows evaluation of the net rate of change of 
energy (or action) for a given wavenumber within the spectrum. Following 
Hasselmann (1961) the integral can be written as 

S(kl+k,-k,-k4)6(wl +w,-w3-W4)dkzdk3dk4, (2.1) 

where k, is the i th interacting vector wavenumber, wi is the radial frequency of the 
ith wavenumber and n(k,) is the action density a t  wavenumber k,. The coupling 
coefficient V2,  is a complicated function of wavenumbers k, and frequencies wi. The 
density function 9, varies cubically in the spectral densities and may be expressed 
as 

Wkl ,  k,, k,, k4) = n(k1) n(k2) “3) + n(k,) n(k3) nk4) 

-n(kl) n(k3) n ( k 4 )  -n(kl) n(kZ) n(k4)‘ (2’2) 

An efficient form for integration is obtained by removing the delta functions from 
(2.1) through the transformation which results in 

where 

an(k1) = 2 T(kl, k3) dk,, - I  at 

T(k,, k,) = W 9  - B(k,, k,, k4) ds f r:l 
20-2 
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is the nonlinear transfer integral, W = w1 + w, - w, - w, and the frequency resonance 
condition is 

w = 0. (2.5) 

Unit vector s is along the interaction locus, defined in k,-space by the constraint 
W = 0. Unit vector n is normal to that locus. The wavenumber resonance condition 
is k, + k, - k, - k, = 0, and 0 may be represented as 

1 when Ik, - k,l d Ik, - k,l 
0 when Ik,-k,l > Ikl-k,l. 

w,, k,, k4) = 

Webb (1978) showed that this provided a stable, efficient form for integration. 
However, it was still tedious to apply this formulation, since for each different value 
of k, and k,, the locus equation had to be solved and a t  each point along the locus 
in k,-space, the coupling coefficient, density term, Jacobian term and phase space 
volume had to be evaluated. 

This problem was simplified by Tracy & Resio (1982) using a polar grid in 
wavenumber space with the radial coordinate spaced according to 

km+,= hkm (2.7) 

where m + 1 is the radial index shown in figure 1. It may be demonstrated that for 
any geometrically similar k, and k,, for example (ki-kjl = hlk,-k,J, the locus 
equation scales linearly in h also. Specifically, for each point along the original locus, 
a geometrically similar point exists in a scaling locus such that ki = hk,. From the 
resonance condition for wavenumbers we obtain k; = hk,, and for each combination 
of four wavenumbers satisfying (ki, k;, k;, kl)  = h (k,, k,, k,, k,) it follows that 

g2(ki,  k;, kj, k;) = h6g2(kl, k,, k,, k,), (2.8) 

pw'/anl-i = hi law/anl-l, (2.9) 

and ds' = Ads. (2.10) 

Therefore, on the geometrically progressive polar grid of figure 1, where mi is radial 
index and n, is the angular index for the ith wavenumber, ds, laW/anl-l and q2 need 
only be calculated once for each different m3-m1 and In,-nll. Letting k, = (k , ,O)  
and k, vary over the entire grid, we initially construct a table of all possible values 
for dslaW/anl-l g2. All other locus solutions, coupling coefficients, Jacobian terms, 
and phase space volumes can be obtained by appropriate rotation and multiplication 
of these results. For example if Iki - kjl = A' Ik, - k,l, then 

W2(ki, ki, kj, k;) = (h)yj ds W2(k1, k2, k,, k,). (2.11) 

These are exact scaling relationships inherent in the collision integral. 
With the computation of 9 and integration around the locus s, evaluation of the 

nonlinear transfer contour integral $ W 2 9  lW"-/anl ds is then complete. Integration 
over all k, values gives the nonlinear transfer source function an(k,)/at, as indicated 
in (2.3). This is also usually denoted Yn,. The scaling geometry of figure 1 allowed 
Tracy & Resio (1982) to obtain integration times that were typically over an order 
of magnitude less than integration times on regularly spaced grids. Using additional 
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Origin 

FIGURE 1. Polar grid in wavenumber space with radial intersection points spaced in the geometric 
progression k,,, = hk,. This example uses k, = 0.14 me-' and h = 1.2. 

symmetries, such as permutations in k, and k,, detailed evaluations of the collision 
integral for the entire spectrum can be performed in 20 min run times on an IBM-PC 
with an accelerator board, on grid resolutions comparable to Hasselmann & 
Hasselmann (1981). 

In the work of Kitaigorodskii (1983), Resio (1987) and Toba et al. (1988), it 
appeared informative to examine fluxes of action (or energy) past a specific 
frequency wA in addition to looking a t  a source function for the entire spectrum. The 
integral for these fluxes from high to low frequencies may be written as 

where H(z) is the Heaviside function, defined as 

1 for x 2 0 
0 for x < 0 

H(x)  = (2.13) 
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and k(w)  is the wavcnumber given by k = w2/g .  The corresponding nonlinear source 
function Yn, can be obtained from a calculation of flux divergence whereas it is not 
possible to estimate the fluxes from the nonlinear source function. Flux estimates 
also provide a direct means of estimating all action transfers from one region of the 
spectrum to another. Consequently, they are useful in partitioning the percentage of 
action (or energy) that moves in various directions within the spectrum. The fact 
that we can compute positive fluxes from low to high frequencies as well as negative 
fluxes from high to low frequencies is very helpful in this regard. 

3. Comparison of integration results to previous estimates 

to spectra representable by the JONSWAP parameterization, 
Most published results for the nonlinear wave-wave transfer have been restricted 

where 

These are typically converted to directional spectra by using the normalized C O S ~ ~  0 
form for angular spreading, 

whcrc the normalization coeficient A(n) ,  satisfies 

Figures 2 (a)-2 ( d )  compare the nonlinear transfer due to wave-wave interactions 
obtained from our integration method with results of Hasselmann & Hasselmann 
(1981). Parameters for all comparative spectra described by (3.1)-(3.4) are given in 
Table 1 .  The integration resolution in our computation was selected to be comparable 
to Hasselmann & Hasselmann (1981) in the spectral peak region. Consequently, any 
apparent differences in jaggedness in figures 2 (a)-2 (d )  cannot be attributed to 
differences in grid resolution in this region of the spectrum. 

Since we have not made any simplifying assumptions, our integration accuracy is 
limited only by the resolution of the integration grid. In  figure 3 we compute the 
nonlinear transfer for the Pierson-Moskowitz spectrum considered in figure 2 ( c )  
using integration grids ( i ,  2', A ) ,  where i is the number of wavenumber bins, 2g is the 
number of angular bins from - 120" to + 120" (unless otherwise specified) and A is the 
number of points on the locus specified in (2 .5) .  Comparing integration grids (115,60, 
70), (78, 30, 50), (48, 20, 30) and (29, 10, l o ) ,  we find that (48, 20, 30) and (78, 30, 
50) give results that are very close to those of (115, 60, 70). Not shown is the 
integration with 115 wavenumber bins, 360 angular bins from - 180" to 180" (1" 
discretization) and 70 points on the locus, which is essentially the same as (115, 60, 
70). The effect of lower resolution on our integration method is a slightly less precise 
representation of the nonlinear transfer. All results are smooth. 

The action flux formulation (2.12) implies that the rate of change of energy due to 
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FIGURE 2. (a )  Nonlinear transfer due to wave-wave interactions obtained from the integration 
method of this paper: 0, compared to Hasselmann & Hasselmann (1981); A, for case 2 in the 
latter study with cos'0 angular spreading. (b )  As in (a )  for Hasselmann t Hasselmann (1981) case 
3 with angular spreading ~ 0 ~ ~ 8 .  ( c )  As in (a )  for Hasselmann & Hasselmann (1981) case 13 
corresponding to Pierson-Moskowitz spectrum. (d )  As in (a) for Hasselmann & Hasselmann (1981) 
case 15 with y = 7. 

nonlinear transfer Yn,( f) may be written as the one-dimensional divergence of energy 
flux, 

(3.5) 

where PE( f) is the energy flux past f from low to high frequencies, and rE( f) is the 
energy flux past f from high to low frequencies. Numerically, we may compare this 
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FIGURE 3. As in figure 2 (c) for Pierson-Moskowitz spectrum, comparison the nonlinear transfer for 
integration grids (i,;, A ) ,  using x , (115, 60, 70); 0,  (78, 30, 50); +, (48, 20, 30); 0,  (29, 10, lo), 
where i is the number of wavenumber bins, 2; is the number of angular bins from - 120' to + 120' 
and A is the number of points on the locus. 

Spreading 
Case? function Peakedness 
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2 - c052 8 3.3 

K 

3 
8 
- C O S ~  8 
3rr: 

3.3 

13 1 .o 
K 

2 
15 - c052 8 7 .O 

n 
t From Hasselmann & Hasselmann (1981). 

TABLE 1.  Parameters for comparative spectra 

flux divergence with the Boltzmann integral (2.3) for nonlinear transfer. Using the 
radial polar geometry of figure 1, we estimate the flux divergence centred between 
radial grid points where nonlinear transfer source term estimates are made, 

Consequently, in regions of rapid nonlinear variations, the two calculations deviate 
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FIGURE 4. (a) A comparison between A, flux divergence, calculated by ( 3 4 ,  and 0,  the Boltzmann 
integral of (2.3), for Hasselmann & Hasselmann (1981) case 2. ( b )  As in (a) for Hasselmann & 
Hasselmann (1981) case 3. 

slightly. As seen in figures 4(a) and 4(b), flux divergence estimates are a good 
approximation to estimates obtained directly from the Boltzmann integral. This 
confirms that the integration method for energy fluxes is properly posed and that the 
numerical technique has adequate detail. 

Two-dimensional computations of an(k)/at, comparable with Webb (1978), are 
shown in figure 5 .  Two-dimensional energy fluxes through the wave spectrum can 
also be computed at  each grid point and may be represented in terms of a flux 
density. For example, the action flux density into an element of phase space centred 
on k, is 

rd(kl) = sT(kl? k3) '31 dk3, (3.7) 

expressed in terms of a unit vector k,, in the direction kl-k3 and the transfer 
integral T(k,, k,) defined in (2.4). The action flux in the positive x-direction into an 
element of phase space dk, centred on k, is therefore 

C(k1)  = dk, T(k1, k3) cosO3, dk3, (3.8) s 
and so forth for other components. Only contributions to the integral are allowed for 
which T(k,, k3) COSO,, is positive, where O,, = arctan [(kzl-kZ3)/(kul-ku3)]. The 
usual Green's relation relates flux divergence to the energy change due to nonlinear 
wave-wave transfer. We plot the action flux density vectors in figure 6. These are for 
the high-frequency region of the spectrum considered in figure 2(a) using a 
' moderate ' resolution grid (50, 31, 46) : 50 frequency bins, 4" discretization within 
the angular domain ( -  120°, + 120") and 46 points on the locus-resonance condition 
(2.5). It is evident that there is little nonlinear transfer outside the angular domain 
( - 120°, + 120") and no flux across the x-axis. 
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FIGURE 5. Two-dimensional nonlinear transfer an(k)/at as a function of wavenumber. 
as in Webb (1978). 
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FIGURE 6. The two-dimensional nonlinear energy fluxes through the spectrum in the 
high-frequency region of the spectrum in figure 2 (a). The magnification factor is 1.4 x lo7 
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FIGURE 7. (a) Variations of energy flux to high frequencies P, with different equilibrium range 
power laws normalized by the value each has a t  1.6 fp : 0, for f 2 ,  A, forf3 ; + , forf4 ; x , for f 5  ; 
0, for f’. Other parameters are fp=0 .3 ,  y =  1.214, a,u=0.01, a , = O . O 7 ,  ab =0.09 and 
directional spreading is cos2 8. (b) Variations of energy flux to low frequencies r, it8 a function of 
equilibrium range power law as in (a). 

4. Basic scaling behaviour of nonlinear fluxes 
4.1. Flux dependence on power laws in the equilibrium range 

To examine the energy flux behaviour for different equilibrium range power laws, we 
consider simple specta of the form 

E( f, e) = Aa, qf I,+ - C O S ~  0, K) 
where m is a positive integer, a, u is a dimensional constant with units of lengthltime, 
A is a directional normalization constant satisfying 

and ~ is a non-dimensional shape function specified by the usual JONSWAP-type 
parameters (3.1)-(3.4), and prescribed in subsequent sections. Experimental evidence 
suggests that  the equilibrium range exists in a subrange of the spectrum from 
approximately 1.6 fp to 2.6 f,. To accentuate the divergence aspects of energy fluxes, 
we normalize all fluxes for a given power law by its value at the low-frequency limit 
of the equilibrium range (i.e. a t  about 1.6 f,). Figures 7 ( a )  and 7 ( b )  show the 
behaviour of these normalized fluxes to high frequencies P,(k) and low frequencies 
FE(k)  for various power laws. Unless otherwise specified, parameters are fp = 0.3, 
y = 1.214, aIu = 0.01, ua = 0.07, ub = 0.09 and directional spreading is cos2e in this 
and subsequent sections. For a constant energy flux through the equilibrium range 
of the spectrum, the normalized fluxes should retain a value of approximately 1. 
However, as can be seen in figure 7, the fluxes are approximately constant only for 
an f spectrum. Spectra with f 2  and f equilibrium ranges have fluxes which 
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FIGURE 8. Variations of energy flux to high frequencies PE, and to low frequencies rE, as a 
function of different peak frequencies: 0.2, 0.3, 0.4 Hz. 

increase with increasing frequency. Spectra with f and f equilibrium ranges have 
fluxes which decrease with increasing frequency. 

The calculations shown here provide additional support for the existence of an f 
equilibrium range in wave spectra. For the remainder of this study, we restrict 
ourselves to analyses of spectra with f equilibrium ranges. The equation for this 
class of spectra is 

As discussed in Resio & Perrie (1989), a judicious selection of parameters makes such 
a form equivalent to  the JONSWAP spectral form. 

4.2. Flux dependence on variations in peak frequency 

To investigate the behaviour of energy fluxes through the equilibrium range as a 
function of peak frequency, we consider spectra of the form (4.3) with + given by 

Integrations for peak frequencies fp of 0.2, 0.3 and 0.4 show that energy fluxes are 
identical when plotted as a function of f / f p .  Figure 8, which appears to contain only 
two curves, actually contains plots for the fluxes to both high and low frequencies 
through all three spectra. 

This may seem surprising a t  first, since Hasselmann et al. (1973) established that 
nonlinear transfer due to wave-wave interactions is dependent on fp. However, the 
frequency axis in figure 8 is scaled by fp. The nonlinear transfer source function for 
these spectra has the form 

YIll (4.5) 
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FIGURE 9. (a) Variations of energy flux to high frequencies PE with peakedness : 0,  for y = 0.65 ; 
A, for y = 1.0; +, for y = 1.55; x , for y = 2.30; 0, for y = 3.25. ( b )  Variations of energy flux to 
low frequencies I-% with peakedness as in (a). 

whereas for an f spectrum 
yn, -h4* 

4.3. The injluence of the spectral peak: onjluxes 
In this section we consider the influence of the sharp energy cutoff below the spectral 
peak as well as the manner in which variations in spectral peakedness affect energy 
fluxes .through the spectrum. Our spectra are of the form (4.2), with 41. given by 

where 

and y is a non-dimensional peakedness parameter. 
The variation in energy fluxes for y = 0.65, 1.0, 1.55, 2.30 and 3.25 is shown in 

figure 9. This range of y corresponds to the measurements of Donelan, Hamilton & 
Hui (1985). Figure 10 show the corresponding nonlinear energy transfer for these 
spectra. A notable feature is the shift of the positive lobe toward higher frequencies 
as y decreases, particularly when y becomes less than 1. The associated transfers of 
action and momentum to the forward face also vary markedly as a function of y. This 
is an important mechanism in controlling wave growth and possibly the evolution 
into a fully-developed spectral form. 

Approximations by Kitaigorodskii (1983) and Resio (1987) concerning equilibrium 
range fluxes neglected consideration of the extent to which energy transfers are 
influenced by the spectral peak and the associated cutoff energy on the forward face 
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FIGURE 10. As in figure 9 for corresponding nonlinear transfer. 

of the spectrum. Experimental results suggest large departures from equilibrium 
range for frequencies less than l.6fp (figure 15 in Donelan et al. 1985). To examine the 
influence of the spectral peak, we consider normalized energy fluxes through the 
spectrum as a function of non-dimensional frequency f/fp. The normalization is that 
proposed for equilibrium range fluxes by Resio (1987) where it was shown that 
energy fluxes in the equilibrium range should vary as 

g2F3(k) k9 
a 3  

r , ( k )  x e (4.9) 

letting F ( k )  be the one-dimensional energy density in wavenumber space and e, a 
non-dimensional constant. We therefore define normalized energy fluxes to be 

(4.10) 

Figure 11 shows the behaviour of f i ( k )  as a function of f/fp for different values of 
y .  From figure l l (a) ,  the normalized flux to high frequencies e ( k )  attains 
equilibrium range values that are essentially independent o,f y by f/fp x 2.3. Figure 
11 ( b )  implies that  the normalized flux to low frequencies F E ( k )  attains equilibrium 
range values that are essentially y independent by f/fp w 1.5. 

Finally, we consider the magnitude of nonlinear energy fluxes and their associated 
source terms as a function of spectral peakedness. Hasselmann et al. (1973) suggest 
that as the peakedness of the spectrum increases, the source functions become larger. 
While this may be true, the mechanism behind it may not be the ‘sharpness’ of the 
spectrum. It may be due to the fact that, in the spectral parameterization used in this 
study and by Hasselmann et al. (1973), the absolute magnitude of the energy 
densities in the region of the peak increases with increasing y .  As these energy 
densities increase, their contributions to the nonlinear fluxes increase by F3(k)  and 
the divergences of the fluxes also increase. 
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FIGURE 1 1 .  (a) Variations in non-dimensional flux to high frequencies R ( k )  with respect to 
peakedness as in figure 9, plotted against flf,. PE(k) is np-dimensionalized according to (4.10). (6) 
Variations in non-dimensional flux to low frequencies rE(k) with respect to peakedness as in (a). 
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FIGURE 12. Variation of spectra with respect to peakedness as in figure 9. All spectra are 
normalized to have the same maximum. 

A related concern is therefore whether or not source terms and fluxes become 
larger for different peakedness values, given the same energy density at  the spectral 
peak. To answer this, we performed integrations for spectra defined by (4.3), 
(4.7)-(4.8) and normalized to have the same spectral energy a t  the peak. Figure 12 
shows the spectral shapes for various y generated in this manner. The fluxes and 
associated nonlinear energy transfer terms are shown in figures 13 and 14 
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FIQURE 13. (a )  Energy fluxes to high frequencies PE(k) corresponding to spectra of figure 12 as a 
function of peakedness as in figure 9. ( b )  Energy fluxes to low frequencies rE(k) as a function of 
peakedness as in (a). 
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FIGURE 14. Nonlinear transfer corresponding to the spectra of figure 12. 

respectively. It is evident that, with the same energy density a t  the spectral peak, 
the magnitude of both the fluxes and the source terms are larger for broader spectra 
than they are for more sharply peaked spectra. 

4.4. Eflects of angular distribution of energy on energy Jluxes 

The parameterization of spectral peakedness presented above gives an indication of 
the manner in which the gradient of energy density as a function of frequency f, can 
affect energy fluxes through a spectrum. For a given frequency, the gradient of 
energy density with angle 0 can also affect energy fluxes through a spectrum. Thus 
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FIQURE 15. (a)  Energy fluxes to high frequencies PE(E(k) as a function of angular spreading cosZn 0: 
x , for n = 1 ; +, for n = 2; A, for n = 4;  0,  for n = 8. ( b )  Energy fluxes to low frequencies ra(k) 
as a function of angular spreading as in (a).  

far, we have only considered spectra with a cos2 8 angular distribution. Although it 
may be instructive to analyse spectra with f- and &dependent spreading functions 
as presented by Mitsuyasu et al. (1975), Hasselmann, Dunkel & Ewing (1980) and 
Donelan et al. (1985), for simplicity we examine only spreading functions which are 
independent off. 

Using the spectrum (4.3) and (4.7)-(5.8) with a4u = 0.01, fp = 0.3, y = 1.214, 
ua = 0.07 and u,, = 0.09, integrations were made with normalized C O S ~ ~  8 spreading 
functions, letting n equal 1, 2, 4 and 8. As shown in figure 15, energy fluxes are 
dependent on the angular spreading function and increase as n increases. The 
dependency is not as strong as in the case of spectral peakedness although the range 
of variation was taken to cover the range that could be expected to occur in nature. 
The equilibrium range first occurs a t  f/fp x 2.0 for the flux to high frequencies PE(k) 
and somewhat earlier at  f/fp x 1.5 for the flux to low frequencies rE(k). 

4.5. Variations in nonlinear Jluxes due to the equilibrium range coeficient 
It is apparent from the algebraic structure of the density function 93 as shown in 
(2.2), that any multiplicative factor introduced into a spectral density manifests 
itself as the cube of that factor in 9. As this is used later, we numerically demonstrate 
this. Figure 16 shows the calculated energy fluxes for a referencef4 spectrum with 
parameter a4 u = 0.01, fp = 0.3, y = 1.21, ra = 0.07 and r,, = 0.09. Energy fluxes are 
also presented for spectra with identical parameters except that a4u = 0.03. 
Dividing the fluxes of the second computation by 27 makes the two curves exactly 
the same. 

4.6. Numerical evaluation of the non-dimensional flux coegicients 
Figure 9 showed that the flux to high frequencies PE(k) attains equilibrium range 
values that are independent of peakedness y by f/fp x 2.3 and the flux to low 
frequencies rE(k) attains equilibrium range values that are y independent by f/fp x 
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FIGURE 16. (a) Variation of energy fluxes t o  high frequencies JYE(k) with a4u: 0, for a4u = 0.01; 
A, for a4u = 0.03. The plots differ by a factor of 27. (b) Variation of energy fluxes t o  low frequencies 
I&k) as a function of a4u as in (a). 

1.5. Figure 8 shows that these fluxes are independent of the location of fp. Therefore, 
for a given angular spreading function, whether or not frequency dependent, energy 
fluxes in these equilibrium ranges are only dependent on the equilibrium range 
coefficient. This supports the estimates for energy fluxes through the spectrum made 
by Kitaigorodskii (1983) and Resio (1987), based on arguments that the fluxes should 
approximately balance energy input by wind. 

Energy flux estimates (4.9) expressed in terms of frequency, may be represented 
as 

(4.11) 

where ' + ' refers to fluxes from low to high frequencies, ' - ' refers to fluxes from high 
to low frequencies, #+ is a non-dimensional shape function and ef is a non- 
dimensional constant. As $* = 1 in the equilibrium range, e+ has the same meaning 
as e in (4.9). 

Substituting the appropriate equilibrium form for E ( f )  from (4.3) into (4.11) 
yields, 

a: u ~ ( ~ R ) ~ A ~  

89 
fi(f) = €+ (4.12) 

which, as shown in figure 9, represent good approximations for all spectra of the form 
(4.3). Since u4u is a known quantity in our integrations, we can explicitly evaluate 
e f .  We find 

ek z 60 (4.13) 

making the evaluation a t  about the midpoint of the equilibrium range. This is 
consistent with the earlier estimates of Resio (1987). 
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FIGURE 17. For caption see next page. 
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FIGURE 17. (a)  The time evolution of one-dimensional energy E ( f )  in the absence of 9’,44, and Yds. 
The integration grid is (48, 20, 30) with 15 s timesteps. 0, 15 s;  +, 1 h ;  0, 3 h ;  x ,  11 h. ( b )  As 
in (a ) ,  the total energy E, variation with time. ( c )  As in (a) ,  the variation of the nonlinear energy 
transfer Y,,, with time. 

5. Spectral evolution in time 
5.1. Evolution of energy and nonlinear transfer in time 

With respect to  space and time, the spectral energy density E( f, 0) from (4.3) in deep 
water evolves as 

where y,,, is the wind input spectral energy, Ynl is the nonlinear transfer due to 
wave-wave interactions and Yds is the wave breaking dissipation. We compute the 
time evolution of one-dimensional energy E( f ), total energy E, and nonlinear 
transfer Ynl in figures 17 (a) ,  17 ( b )  and 17 (c), in the absence of Yin and YdS. Our 
integration grid is (48, 20, 30), with 30 s timesteps and an initial spectrum as shown 
in figure 17 (a) .  We model the spectrum above 2fp with an f tail to reduce computer 
requirements. 

The time progression of the spectrum is presented in figure 17 (a) .  Influenced only 
by wave-wave interactions, the spectrum initially steepens and the peak migrates to 
lower frequencies. However, because the integration grid extends over only a finite 
range on the frequency axis, total energy slowly decreases as energy is fluxed to the 
high-frequency boundary of the grid and is lost to the next timestep of the 
integration. Thus, the peak of the spectrum decreases with time after about an hour. 
The time evolution of total energy E ,  in figures 17 ( b )  is a further reflection of the loss 
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FIGURE 18. (a) Evolution of the energy spectrum in response to a 10 x perturbation at  3fp where 
the spectrum is denoted by: 0 ,  initially; + , after 1 min; 0, after 2 min; x , after 3 min. ( b )  As 
in (a) in response to a 5 x perturbation at 2fp where the spectrum is denoted by : 0, initially ; + , 
after 2 min; 0, after 4 min; x , after 6 min. (c) As in (a) in response to a 3 x perturbation at  1.5jp 
where the spectrum is denoted by: 0,  initially; + , after 10 rnin; 0, after 20 min; x , after 30 min. 
(d )  As in (a) in response to a 2 x perturbation a t  Hf, where the spectrum is denoted by : 0, initially ; 
+ , after 20 min ; 0, after 40 rnin ; x , after 60 min. 
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of energy due to  finiteness of the grid. Finally, in figure 17 (c) we see the evolution of 
the corresponding nonlinear transfer Ynl. Owing to a diminished spectrum, Yn, 
decreases drastically as time increases and migrates to lower frequencies following 
the migration of the spectrum. 

5.2. Response to perturbations in the spectrum 
It is important to investigate the response of the nonlinear energy transfer to 
perturbations within the spectrum in order to assess the rate a t  which a spectrum 
relaxes toward a quasi-stationary state. We compute the time evolution of one- 
dimensional energy E ( f )  using a (48, 20, 30) grid with initial spectral parameters as 
in $5.1, I n  figure 18(a), we introduce a 10 x perturbation at 3fp. Using 15 s timesteps 
and integrating over the entire frequency domain (without using an f4 tail as 
in §5.1), we see that within 3 min the nonlinear interactions have reduced the 
perturbation to  less than 90 % of its original magnitude and distributed the energy 
among neighbouring spectral energy bins. Figure 18 ( b )  presents a 5 x perturbation 
at  2fp. I n  this situation, the nonlinear interactions essentially remove the 
perturbation within 6 min. In figure 18(c) a 3 x perturbation at 1.5fp is removed in 
30 min. Finally in figure 18 ( d )  a 2 x perturbation a t  gp requires 1 h before nonlinear 
interactions have removed approximately 90 % of it. 

From figure 3, our investigations show that the nonlinear energy transfer should 
be smooth, even for very coarse integration grids. We have demonstrated that 
nonlinear wave-wave interactions work to  smooth perturbations introduced into the 
spectrum as spikes. Clearly the time taken for the nonlinear interactions to respond 
to  any perturbation depends strongly on where it occurs within the spectrum. 

5.3. Relaxation times within the equilibrium range 

An alternate view of the spectral response to perturbations within the equilibrium 
range may be presented in terms of relaxation times within the equilibrium range. I n  
a manner typical of many others. Kitaigorodskii (1983) estimated relaxation times 
for wave-wave interactions in terms of energy density and rate of change of energy, 
at a given frequency 

E(f)  

at 
y=aE(f) 

Unfortunately, the denominator of (5 .2)  becomes very small in the equilibrium range 
and the estimated relaxation time becomes arbitrarily large. Therefore we propose a 
different form based on energy fluxes 

(5.3) 
€ 

Y =  
ryE+ly 

where € is the total energy in the region of the spectrum being considered, 

and fi and f i  are the appropriate upper and lower frequency limits of the equilibrium 
range. This definition relates relaxation time to the time required for nonlinear 
energy fluxes to  remove all the energy from a specific region of the spectrum. This 
is a physically consistent approach to estimating the relative strength of the 
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FIQURE 19. (a)  Relaxation time defined by (5.3) as a function of a4u: 0 ,  y = 1; +, y = 2 ;  
0,  y = 5 ;  x , y = 10. ( b )  As in (a )  as a function off,. 
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nonlinear fluxes and is motivated by (3.5) relating the nonlinear transfer Ynl to 
spectral fluxes. 

To investigate the sensitivity of relaxation times defined by (5.3) with respect to 
peakedness y ,  peak frequency fp and a4u, we combine (4.3), (4.12), and (5.3) and infer 

where d is a non-dimensional constant depending on fi, fi and spectral peakedness 
y .  Assuming an equilibrium range between l.6fp and 2.5fp, figure 19(a) shows the 
variation of 9- with a4 u and y ,  computed in the middle of the equilibrium range from 
(5.3). Similarly, figure 19(b) shows the variation of F with respect to fp and y. The 
agreement between (5.5) and figures 19 (a )  and 19 ( b )  is remarkable. The exponents for 
fp and a4 u in (5.5) are obtained to 3 decimal places with correlation coefficients that 
are very near one. Relaxation times in these computations are seen to correspond to 
the results of the previous section. The mid-range abscissa in figure 19(a) is 
appropriate for wind speeds from 12 to 20 m s-l with fp = 0.3. 

6. Conclusions 
A different perspective for nonlinear energy transfer due to wavewave 

interactions in a spectrum has been suggested. Formulating an efficient numerical 
integration scheme for the nonlinear energy transfers first described by Hasselmann 
(1961), we calculated energy fluxes through the spectrum and the spectral evolution 
with time. The divergence of these fluxes is the conventional ‘source term’ 
formulation used in past parameterizations of nonlinear transfer due to wavewave 
interactions. Moreover, fluxes appear to provide an important understanding of 
overall energy exchanges among various regions of the spectrum. We make the 
following conclusions : 

(i) As described by Zakharov & Filonenko (1968), Kitaigorodskii (1983) and Resio 
(1987), and seen in figure 7, energy fluxes through the equilibrium range of a 
spectrum are approximately constant only for an f4 spectrum, at  frequencies 
sufficiently above the spectral peak. 

(ii) Fluxes through a spectrum are independent of fp, as seen in figure 8 ; nonlinear 
energy transfers for an f spectrum therefore scale as a3&l rather than a 3 c  as in the 
case of a n f 5  spectrum. 

(iii) Energy fluxes through the equilibrium range are independent of spectral 
peakedness and depend only on the local energy densities. This is evident in figure 
9 and also the non-dimensional curves of figure 11. The lobes of the corresponding 
nonlinear energy transfers shift to higher frequencies with decreasing peakedness, 
particularly when peakedness is less than 1.0. 

(iv) Decreasing peakedness while holding the energy of the peak constant leads to 
decreased sharpness, broader spectra, enhanced energy fluxes and nonlinear energy 
transfers. Concomitantly, the peaks of the lobes migrate to higher frequencies. This 
is shown in figures 12-14. 

(v) Variations in peakedness produce more significant changes in energy fluxes 
than do variations in angular spreading. This compares figure 9 to figure 15. In either 
case, the range considered was taken to cover what could be expected to occur in 
nature. 

(vi) The nonlinear energy transfer should be smooth, as shown in figure 3, even for 
very coarse integration grids. Section 5.2 demonstrated that wavewave interactions 
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work to  smooth perturbations introduced into the spectrum as spikes. The time 
taken for the nonlinear interactions to respond to any perturbation depends strongly 
on where it occurs within the spectrum. 

(vii) Computations of relaxation time, expressed as the quotient of the equilibrium 
range energy by the sum of energy fluxes, agree well with equilibrium range flux 
parameterizations, as shown in figure 19. The more usual expression for relaxation 
time is the quotient of the equilibrium range energy by the nonlinear energy transfer 

We are motivated by these results to expect that it is possible to include the 
complete Boltzmann integral for nonlinear wavewave interactions in a research 
wave model using the integration method of this paper. This approach should be an 
improvement over the present parameterizations of nonlinear transfer due to 
wavewave interactions. Although the computer time required for this may still be 
prohibitive for operational wave modelling, it should be possible to investigate 
simple fetch- and duration-limited wave growth situations. 
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